1. Sodium metal reacts with water to produce hydrogen gas and sodium hydroxide. When 0.575 g of sodium is added to 100.00 g of water, the temperature of the resulting solutions rises from 25.00 C° to 35.75 C°. If the specific heat of the solution is 4.18 J/(g \cdot C°), calculate Δ H for the reaction, in kJ/mol.

2. According to the following thermochemical equation, what mass of H₂O (in g) must form in order to produce 975 kJ of energy?

$$SiO_2(s) + 4 HF(g) \rightarrow SiF_4(g) + 2 H_2O(l)$$
 $\Delta H^{\circ}_{rxn} = -184 \text{ kJ}$

3. Use the standard reaction enthalpies given below to determine ΔH°_{TXN} for the following reaction:

$$2 S(s) + 3 O_2(g) \rightarrow 2 SO_3(g)$$
 $\Delta H^{\circ}_{rxn} = ?$

Given:

(1)
$$SO_2(g) \rightarrow S(s) + O_2(g)$$
 $\Delta H^{\circ}(1) = +296.8 \text{ kJ}$

(2) 2 SO₂(g) + O₂(g)
$$\rightarrow$$
 2 SO₃(g) $\Delta H^{\circ}(2) = -197.8 \text{ kJ}$

4. Compute ΔH° in kJ for 2 LiH(s) + O₂(g) \rightarrow Li₂O(s) + H₂O(l)

(1) 2 LiOH(s)
$$\rightarrow$$
 Li₂O(s) + H₂O(l) $\Delta H_{(1)}^{\circ} = 379.1 \text{ kJ}$

(2) LiH(s) + H₂O(l)
$$\rightarrow$$
 LiOH(s) + H₂(g) $\Delta H_{(2)}^{\circ} = -111.0 \text{ kJ}$

(3) 2 H₂(g) + O₂(g)
$$\rightarrow$$
 2 H₂O(I) $\Delta H_{(3)}^{\circ} = -285.9 \text{ kJ}$

5. Given the heat of formation of the following compounds:

CO₂(g)
$$\Delta H^{\circ}_{f} = -393.5 \text{ kJ/mol}$$

H₂O(l) $\Delta H^{\circ}_{f} = -285.9 \text{ kJ/mol}$
CH₃OH(l) $\Delta H^{\circ}_{f} = -238.6 \text{ kJ/mol}$

What is the value of the ΔH for combustion of one mole of methanol, CH₃OH(I)?

6. Sulfur dioxide reacts with oxygen to form sulfur trioxide. Use the ΔH°_{f} and ΔH°_{rxn} information provided to calculate ΔH°_{f} for SO₃(g):

$$2 SO_2(g) + O_2(g) \rightarrow 2 SO_3(g)$$
 $\Delta H^{\circ}_{rxn} = -198 \text{ kJ}$ $\Delta H^{\circ}_f SO_2(g) = -297 \text{ kJ/mol}$

7. Write the chemical equation for the reaction that describes the formation of ammonium bromide at standard state conditions.